ICRI PANEL - CASE STUDIES IN CONVERTING IRON TYPES IN PRODUCTION

Robb Schmidt
American Axle & Manufacturing
Casting Division - Saint Cloud

Different Grades DI in Pressure Pour

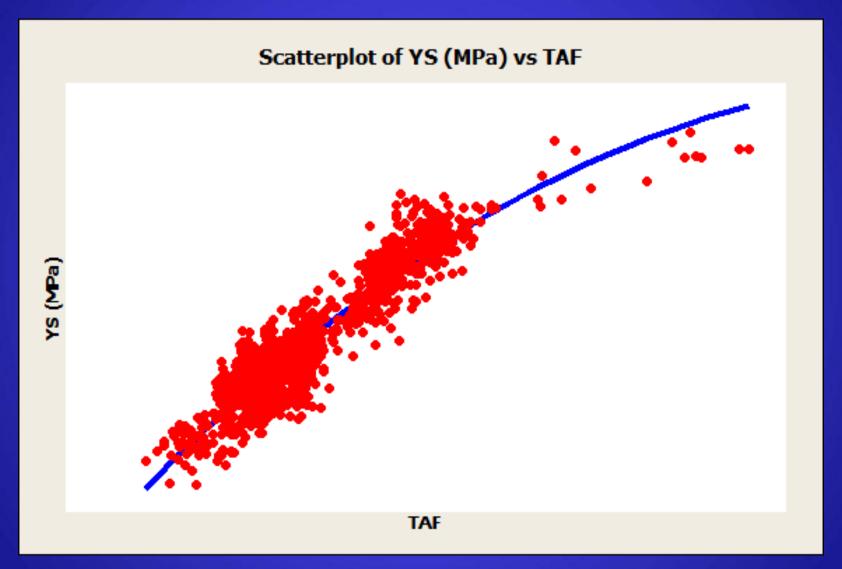
- SOME GRADES require more alloy
 - ☐ Add more.

- SOME GRADES require less alloy
 - > Put less in.

THANK YOU!

Brief Overview of Saint Cloud

- 99% Ductile Iron Facility with two active pouring lines:
 - Disa 270B or a Disa 2070B each with their own 20 ton channel pressure pour, but currently share one sand system.
 - One 32x56, 16/14 BMD connected to a 15 ton channel pressure pour.
- All lines use an automatic Inductotherm VisiPour system.
- One 65 ton channel holding furnace feed those lines via a Fischer Converter Process.


Control Starts Early

- SAE J434 D450, D500, D550 and D700 as-cast.
- Minimize elements that change.
 - Standardize elements as much as possible.
 - Carbon same throughout all grades.
 - Silicon for CE refinement.
 - Nickel, Moly, other elements held to tight tolerances.
 - Target Total Alloy Factor (TAF).
 - Combined factor of chrome, copper and manganese.
 - We manually vary copper to achieve properties.

Yield Strength vs TAF

One Holder

- Everything for DI is in a common holder.
- Holder chemistry is optimized to minimize MnO and FeO slag.
- Holder sample is taken about every hour, so we constantly know where it is at.

Calculation

- Know the Weight and Chemistry of the Pressure Pour as well as the Converter.
- Simple Stoichiometry:
 - Computer Calculated
 - Two Sets of Eyes
 - Train Everyone in Manual Calculation.

	Weight	Si	Mn	TAF				
PP start	15000	2.61	0.39	1.03				
target		2.55	0.5	2.25				
holder	10000	2.12	0.38	0.95				
Get in	double ?	lbs in Furnace	Si	Mn	TAF	Si Add	Mn Add	Cu Add
PP start		15000	2.61	0.39	1.03			
holder	1	10000	2.12	0.38	0.95			
Adds		218				44	42	132
For Pouring		25218	2.53	0.5	2.25			

Tap Metal from Holder to Converter

- Process 5 ton batches.
 Fork trucks have scales installed.
- Add alloys slower going into solution at tap in.
- Add Copper and magnesium just before treatment.

Tap Metal from Holder to Converter

- Take over 5 ton batches.
 Fork trucks have scales installed.
- Add alloys slower going into solution at tap in.
- Add Copper and magnesium just before treatment.

After Tap In

- MIX IT!
 - 6 times minimum.
- Chemical Sample to Verify Before We Start Pouring, especially if the jump in TAF is large.

For additional information, please contact:

- Robb Schmidt
- 5200 Foundry Circle, Saint Cloud, MN 56303
- 320-202-3691
- 320-202-3666
- rschmidt@grede.com
- www.AAM.com

